Na podstawie § 16 pkt 2 rozporządzenia Ministra Infrastruktury z dnia 8 listopada 2004 r. w sprawie aprobat technicznych oraz jednostek organizacyjnych upoważnionych do ich wydawania (Dz. U. Nr 249, poz. 2497 ze zm.), po przeprowadzeniu postępowania aprobacyjnego, którego wnioskodawcą jest producent o nazwie:

Atlantic Industries Limited

z siedzibą: P.O. BOX. 1006, 3155 Rt. 935, Dorchester
New Brunswick, E 4 K 3V5 Canada

Instytut Badawczy Dróg i Mostów

stwierdza pozytywną ocenę techniczną i przydatność wyrobu budowlanego:

Zestaw wyrobów do budowy konstrukcji niosących, prefabrykowanych z blachy falistej, stalowej do budowli z naziemem

o nazwie handlowej: Stalowe elementy konstrukcyjne z blachy falistej ocynkowanej SuperCor do budowy obiektów inżynierskich

do stosowania w budownictwie - w inżynierii komunikacyjnej - w zakresie stosowania i przeznaczenia oraz przy spełnieniu warunków podanych w niniejszej Aprobacie Technicznej IBDiM.

Instytut Badawczy Dróg i Mostów dla wyżej wymienionego wyrobu budowlanego wskazuje obowiązujący system oceny zgodności 2+

Data wydania Aprobaty Technicznej: 16 maja 2005 r.
Data utraty ważności Aprobaty Technicznej: 16 maja 2018 r.
1 PODSTAWA PRAWNA UDZIELENIA APROBATY TECHNICZNEJ

Aprobata Techniczna została udzielona na podstawie:
1. ustawy z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. Nr 92, poz. 881 ze zm.), zwanej dalej „ustawą”;
2. rozporządzenia Ministra Infrastruktury z dnia 8 listopada 2004 r. w sprawie aprobat technicznych oraz jednostek organizacyjnych upoważnionych do ich wydawania (Dz. U. Nr 249, poz. 2497 ze zm.), zwanej dalej „rozporządzeniem”.

2 NAZWA TECHNICZNA I NAZWA HANDLOWA ORAZ IDENTYFIKACJA TECHNICZNA WYROBU BUDOWLANEGO

2.1 Nazwa techniczna i nazwa handlowa

Na podstawie § 5 ust. 1 rozporządzenia Instytut Badawczy Dróg i Mostów określił następującą nazwę techniczną: Zestaw wyrobów do budowy konstrukcji niosących, prefabrykowanych z blachy falistej, stalowej do budowli z naziomem

i nazwę handlową: Stalowe elementy konstrukcyjne z blachy falistej ocykowanej SuperCor do budowy obiektów inżynierskich

2.2 Określenie i adres wnioskodawcy

Wnioskodawcą jest producent o nazwie i z siedzibą, które zostały określone na stronie 1/20 niniejszej Aprobaty Technicznej IBDiM.

2.3 Miejsce produkcji wyrobu budowlanego

Wyrób jest produkowany w:

a) Atlantic Industries Limited
 P.O. BOX. 1006, 3155 Rt. 935, Dorchester
 New Brunswick, E 4 K 3V5 Canada

b) ViaCon Sp. z o. o.
 ul. Przemysłowa 6
 64-130 Rydzyna

2.4 Identyfikacja techniczna wyrobu budowlanego

Przedmiotem Aprobaty Technicznej jest zestaw wyrobów do budowy konstrukcji niosących z blachy falistej o nazwie handlowej SuperCor, zwany dalej „zestawem SuperCor”, służący do budowy obiektów inżynierskich.

Niniejsza Aprobata Techniczna obejmuje następujące elementy:
- arkusze wyprofilowanej blachy falistej,
- łączniki śrubowe,
- ceowniki montażowe.
Zestaw SuperCor montowany jest z odpowiednio ukształtowanych elementów - arkuszy z blachy falistej wyprofilowanej, o grubości od 3,5 mm do 8,10 mm za pomocą łączników śrubowych. Profil fali - karbu ma wymiary 381 mm x 140 mm (rysunki Z2-1 i Z2-2 w Załączniku 2). Profil karbowania jest stały dla wszystkich przekrojów i gabarytów. Jako łączniki stosuje się śruby zgodne z ASTM A 449-93 i ASTM A 563-96 lub zgodne z PN-EN ISO 898-1 i PN-EN ISO 898-2. Długości śrub dostosowane są do grubości łączonych elementów (rysunek Z2-4 w Załączniku 2).

Zestaw SuperCor wykonywany jest w następujących podstawowych kształtach przekrojów poprzecznych (rysunek Z1-2 w Załączniku 1):
- przekrój kołowy,
- przekrój skrzynkowy,
- przekrój o tradycyjnym profilu luku,
- przekrój o niskim profilu luku,
- przekrój o średnim profilu luku,
- przekrój o wysokim profilu luku.

W ramach każdego kształtu występuje określona liczba elementów oznaczonych symbolem literowym oraz kolejną liczbą, od najmniejszej do największej. Każdy przekrój posiada jednoznacznie określone parametry, takie jak rozpiętość, wysokość, pole powierzchni, promienie wszystkich krzywizn, grubość blach, liczbę elementów tworzących obwód, itp. W tablicy Z1-1 w Załączniku 1 zamieszczono największe i najmniejsze standardowe przekroje w ramach danego kształtu z podaniem symboli oraz podstawowych wymiarów przekroju. W Załączniku 2 przedstawiono charakterystyki geometryczne arkuszy blach, profilu fali i złącza śrubowych. Dla każdego z przekrojów przy większych rozpiętościach istnieje możliwość zastosowania dodatkowych wzmocnień w najbardziej wytężonych jego częściach (rysunek Z1-1 w Załączniku 1).

Cewniki montażowe (rysunek Z2-3 w Załączniku 2) służą do połączenia arkuszy blach falistych z fundamentem w konstrukcjach o przekrojach otwartych. Cewniki montażowe łączone są z arkuszami blach za pomocą złączy śrubowych analogicznych jak do łączenia arkuszy blach, natomiast z fundamentem cewniki łączone są za pomocą kotw. Cewniki montażowe wykonywane są z blachy stalowej o grubości 5 mm, w długościach 3124 mm i 3035 mm.

Wszystkie elementy zestawu SuperCor są zabezpieczane antykorozyjnie przez producenta. Podstawowym (standardowym) sposobem zabezpieczenia antykorozyjnego blach i cewników jest cynkowanie zanurzeniowe (ogniowe) zgodnie z normą PN-EN ISO 1461 oraz „Zaleceniami projektowymi i technologicznymi dla podatnych konstrukcji inżynierskich z blach falistych” (Załącznik do Zarządzenia Nr 9 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 18 marca 2004 r.).

Zestaw SuperCor może być również poddany złożonemu systemowi ochrony antykorozyjnej, na który składa się dodatkowo, oprócz zabezpieczenia standardowego, powłoka malarska do powierzchni oczynkowanych ogniowo, zgodnie z projektem oraz „Zaleceniami projektowymi i technologicznymi dla podatnych konstrukcji inżynierskich z blach falistych” (Załącznik do Zarządzenia Nr 9 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 18 marca 2004 r.).
3 PRZEZNACZENIE, ZAKRES I WARUNKI STOSOWANIA WYROBU BUDOWLANEGO

3.1 Przeznaczenie

Zestaw SuperCor przeznaczony jest do przeprowadzenia cieków wodnych, ruchu pieszego, drogowego i kolejowego, zwierzyń oraz urządzeń instalacyjnych (rurociągów, taśmociągów) i kabli przez nasypy drogowe i kolejowe.

Obiekty inżynierskie wykonane z zestawu SuperCor mogą być stosowane dla wszystkich klas obciążeń dróg kolowych i kolejowych – w przypadku linii kolejowych do prędkości poruszającego się taboru szynowego V ≤ 250 km/h pod warunkiem spełnienia wszystkich wymagań odnośnie kształtowania i wykonywania zasypki.

Wyroby objęte niniejszą Aprobatą Techniczną mogą być również stosowane do wzmacniania, renowacji i przebudowy istniejących przepustów i obiektów inżynierskich, wypełniając gruntem lub betonem przestrzeń między istniejącą konstrukcją a konstrukcją wykonaną z zestawu SuperCor.

3.2 Zakres stosowania

Na podstawie § 5 ust. 1 rozporządzenia Instytut Badawczy Dróg i Mostów stwierdza przydatność zestawu wyrobów budowlanych o nazwie: Zestaw wyrobów do budowy konstrukcji niosących, prefabrykowanych z blachy falistej (stalowej) do budowli z naziomem, do stosowania w inżynierii komunikacyjnej zgodnie z jego przeznaczeniem, opisanym w punkcie 3.1 w zakresie:

3.2.1 drogowych obiektów inżynierskich z ograniczeniem do:
 - mostów,
 - wiaduktów,
 - przejść podziemnych,
 - przepustów,

w rozumieniu i zgodnie z warunkami określonymi w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz. U. Nr 63, poz. 735 ze zm.).

3.2.2 kolejowych obiektów inżynieryjnych z ograniczeniem do:
 - mostów,
 - wiaduktów,
 - przepustów,
 - podziemnych przejść dla pieszych,

w rozumieniu i zgodnie z warunkami określonymi w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 10 września 1998 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie (Dz. U. Nr 151, poz. 987).
3.3 Warunki stosowania

Każdorazowe zastosowanie zestawu SuperCor powinno się opierać na projekcie budowlanym, uwzględniającym przewidywane obciążenie wg PN-EN 1990 i PN-EN 1991-2 lub PN-S-10030:1985, warunki hydro-geologiczne związane z lokalizacją obiektu oraz odpowiedni do tego dobór wymiarów stosowanych elementów konstrukcyjnych, zgodnych z wytycznymi producenta i „Zaleceniami projektowymi i technologicznymi dla podatnych konstrukcji inżynierskich z blach falistych” (Załącznik do Zarządzenia Nr 9 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 18 marca 2004 r.).

Obiekty inżynierskie i inżynieryjne wykonane z zestawu SuperCor zgodnie z zakresem stosowania podanym w pkt. 3.2 niniejszej Aprobaty Technicznej powinny spełniać wymagania podane w rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz. U. 2000 nr 63 poz. 735) oraz rozporządzeniu Ministra Transportu i Gospodarki Morskiej z dnia 10 września 1998 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie (Dz. U. Nr 151, poz. 987).

Wyrób budowlany należy stosować zgodnie z przeznaczeniem, zakresem i warunkami, które podano w Aprobacie Technicznej oraz w przepisach techniczno-budowlanych właściwych dla poszczególnych rodzajów budowli w inżynierii komunikacyjnej.

Przed zastosowaniem wyrobu budowlanego w sposób niezgodny z przepisami techniczno-budowlanymi należy uzyskać zgodę na odstępstwo od tych przepisów w trybie określonym w art. 9 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (t. j. Dz. U. z 2006 r. Nr 156, poz. 1118 ze zm.).

4 WŁAŚCIWOŚCI UŻYTKOWE I TECHNICZNE WYROBU BUDOWLANEGO

Właściwości użytkowe i techniczne wyrobu budowlanego zestawiono w tablicy.

Tablica

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Właściwość</th>
<th>Jednostki</th>
<th>Wymaganie</th>
<th>Metoda badania według</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gatunek stali:</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- do produkcji arkuszy blach</td>
<td></td>
<td>S315MC</td>
<td>- AASHTO M167 i ASTM A1011/A1011M lub PN-EN 10149-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S235</td>
<td>- PN-EN 10025-1 i PN-EN 10025-2</td>
</tr>
<tr>
<td></td>
<td>- do produkcji ceowników montażowych</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Łączniki</td>
<td>3</td>
<td>- klasa 8.8</td>
<td>CSA G401-93, ASTM A449-93, ASTM A563-96 lub PN-EN ISO 898-1</td>
</tr>
<tr>
<td></td>
<td>- śruby</td>
<td></td>
<td>- klasa 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- nakrętki</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ciąg dalszy tablicy

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grubość arkuszy blach falistych</td>
<td>mm</td>
<td>PN-EN 10131</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>- dla grubości < 5 mm: dopuszczalne odchyłki od grubości nominalnej: ± 0,28 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- dla grubości ≥ 5 mm: dopuszczalne odchyłki od grubości nominalnej: +0,40 / -0,30 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wytrzymałość połączeń śrubowych arkuszy blach falistych o grubości nominalnej:</td>
<td>kN/m</td>
<td></td>
<td>Procedura Badawcza IBDiM Nr PB/TW-1/144:2013*</td>
</tr>
<tr>
<td></td>
<td>- 3,56 mm</td>
<td>≥ 963</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4,32 mm</td>
<td>≥ 1270</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4,79 mm</td>
<td>≥ 1489</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 5,54 mm</td>
<td>≥ 1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6,32 mm</td>
<td>≥ 2101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 7,11 mm</td>
<td>≥ 2101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 8,10 mm</td>
<td>≥ 2101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wygląd cynkowej powłoki antykorozyjnej na arkuszach blach, śrubach i nakrętkach oraz na ceownikach montażowych</td>
<td>-</td>
<td>wg PN-EN ISO 1461</td>
<td>PN-EN ISO 1461 lub sprawdzenie dokumentów kontroli wg PN-EN 10204</td>
</tr>
<tr>
<td>6</td>
<td>Grubość cynkowej powłoki antykorozyjnej:</td>
<td>μm</td>
<td>Miejscowa:</td>
<td>Średnia:</td>
</tr>
<tr>
<td></td>
<td>- blachy o grubości < 6,0 mm</td>
<td>≥ 55</td>
<td>≥ 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- blachy o grubości ≥ 6,0 mm</td>
<td>≥ 70</td>
<td>≥ 85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- śruby, nakrętki</td>
<td>≥ 40</td>
<td>≥ 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ceowniki montażowe</td>
<td>≥ 55</td>
<td>≥ 70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Grubość dodatkowej powłoki antykorozyjnej:**</td>
<td>μm</td>
<td></td>
<td>PN-EN ISO 2808</td>
</tr>
<tr>
<td></td>
<td>- malarskiej</td>
<td>≥ 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- polimerowej</td>
<td>≥ 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Przyczepność dodatkowej powłoki antykorozyjnej (malarskiej lub polimerowej) do powierzchni oczynkowanej**</td>
<td>MPa (lub stopień)</td>
<td></td>
<td>PN-EN ISO 4624 lub ASTM D3359-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 4 (lub ≥ 3 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reakcja na ogień</td>
<td>-</td>
<td>Klasa A1</td>
<td>PN-EN 13501-1+A1</td>
</tr>
</tbody>
</table>

* Procedura badania wytrzymałości połączeń śrubowych blach falistych została zamieszczona w Załączniku 3.
** Właściwości oznaczone dla dodatkowych powłok antykorozyjnych wykonanych przez produenta w zakładzie produkcyjnymi i pod kontrolą ZKP.
5 OCENA ZGODNOŚCI

5.1 Obowiązujący system oceny zgodności

Na podstawie § 5 rozporządzenia, Instytut Badawczy Dróg i Mostów wskazuje dla wyżej wymienionego wyrobu budowlanego obowiązujący system 2+ oceny zgodności

W systemie 2+ oceny zgodności producent może wystawić krajową deklarację zgodności z aprobata techniczną na podstawie:

a) zadania producenta:
 - wstępnego badania typu,
 - zakładowej kontroli produkcji,
 - badań próbek pobranych w zakładzie produkcyjnym, prowadzonych przez producenta zgodnie z ustalonym planem badania,

b) zadania akredytowanej jednostki:
 - certyfikacji zakładowej kontroli produkcji na podstawie: wstępnej inspekcji zakładu produkcyjnego i zakładowej kontroli produkcji oraz ciągłego nadzoru, oceny i akceptacji zakładowej kontroli produkcji.

5.2 Wstępne badanie typu

Wstępne badanie typu dokonywane przed wprowadzeniem wyrobu budowlanego do obrotu potwierdza wymagane właściwości użytkowe i techniczne.

Wstępne badanie typu obejmuje:

a) sprawdzenie zgodności stali wg tablicy, lp. 1 (dotyczy wymagań podstawowych: bezpieczeństwo konstrukcji i bezpieczeństwo użytkowania);

b) sprawdzenie zgodności łączników wg tablicy, lp. 2 (dotyczy wymagań podstawowych: bezpieczeństwo konstrukcji i bezpieczeństwo użytkowania);

c) kontrolę odchylek grubości arkuszy blach falistych od grubości nominalnej wg tablicy, lp. 3 (dotyczy wymagań podstawowych: bezpieczeństwa konstrukcji i bezpieczeństwa użytkowania);

d) badanie wytrzymałości połączeń śrubowych arkuszy blach falistych wg tablicy, lp. 4 (dotyczy wymagań podstawowych: bezpieczeństwa konstrukcji i bezpieczeństwa użytkowania);

e) kontrolę wyglądu cynkowej powłoki antykorozjnej wg tablicy, lp. 5 (dotyczy wymagań podstawowych: bezpieczeństwa konstrukcji i bezpieczeństwa użytkowania);

f) kontrolę grubości cynkowej powłoki antykorozjnej wg tablicy, lp. 6 (dotyczy wymagań podstawowych: bezpieczeństwa konstrukcji i bezpieczeństwa użytkowania);

g) kontrolę reakcji na ogień wg tablicy, lp. 9 (dotyczy wymagań podstawowych: bezpieczeństwa konstrukcji, bezpieczeństwa pożarowego i bezpieczeństwa użytkowania).

Wstępne badanie typu należy wykonać ponownie w sytuacji, gdy można poddać wątpliwość wyniki uprzednio wykonanych badań, w szczególności gdy dokonano: zmian konstrukcyjnych wyrobów, zmiany surowców lub elementów składowych, istotnych zmian w technologii produkcji lub zmiany warunków wytwarzania (np.: wymiana linii technologicznej, przeniesienie zakładu produkcyjnego, itp.).
5.3 Zakładowa kontrola produkcji

Wyrób budowlany, objęty niniejszą Aprobą Techniczną, powinien być produkowany zgodnie z systemem zakładowej kontroli produkcji.

Producent powinien ustanowić, udokumentować, wdrożyć i utrzymywać system zakładowej kontroli produkcji w celu zapewnienia, że wyrób wprowadzany do obrotu jest zgodny z wymaganiami niniejszej Aprobaty Technicznej i deklarowanymi wartościami.

System zakładowej kontroli produkcji powinien obejmować:

a) procedury, instrukcje oraz specyfikacje techniczne i normy,
b) opis techniczny wyrobu,
c) regularne kontrole i badania surowców i materiałów,
d) regularne kontrole i badania gotowego wyrobu,
e) ocenę jakości gotowego wyrobu na podstawie wyników kontroli i badań.

Regularna kontrola i badania surowców i materiałów oraz gotowego wyrobu powinny być dokumentowane poprzez zapisy w dokumentacji zakładowej kontroli produkcji. Producent powinien prowadzić wykaz tej dokumentacji w tym stosowanych formularzy i prowadzonych zapisów.

Dokumentacja zakładowej kontroli produkcji powinna być aktualizowana w przypadku wystąpienia zmian w wyrobie, procesie produkcji lub w systemie zakładowej kontroli produkcji.

W procedurach lub w instrukcjach powinien zostać udokumentowany sposób:

a) nadzoru nad dokumentami i zapisami,
b) kontroli i potwierdzania zgodności surowców i materiałów z ustalonymi wymaganiami,
c) nadzoru nad procesem produkcyjnym oraz prowadzenia kontroli i badań w trakcie wytwarzania i gotowego wyrobu,
d) nadzoru nad urządzeniami i maszynami produkcyjnymi,
e) nadzoru nad wyposażeniem do kontroli i badań wyrobu z zachowaniem spójności pomiarowej,
f) prowadzenia oceny zgodności wyrobu z wymaganiami niniejszej Aprobaty Technicznej,
g) postępowania z wyrobem niezgodnym,
h) postępowania ze zgłoszonymi reklamacjami dotyczącymi jakości gotowego wyrobu lub surowców i materiałów,
i) prowadzenia działań korygowających i zapobiegawczych,
j) przeprowadzania audytów wewnętrznych i przeglądów zarządzania,
k) szkolenia personelu.

System zarządzania jakością stosowany wg wymagań PN-EN ISO 9001 może być uznany za system zakładowej kontroli produkcji, jeżeli są również spełnione wymagania niniejszej Aprobaty Technicznej.

5.4 Badania gotowych wyrobów

5.4.1 Program badań

Program badań gotowych wyrobów obejmuje:

a) badania bieżące,
b) badania uzupełniające.
5.4.2 Badania bieżące

Badania bieżące gotowych wyrobów obejmują:

a) sprawdzenie zgodności stali (sprawdzenie dokumentów kontroli wg PN-EN 10204) wg tablicy, lp. 1.
b) sprawdzenie zgodności łączników (sprawdzenie dokumentów kontroli wg PN-EN 10204) wg tablicy, lp. 2.
c) sprawdzenie grubości arkuszy blach falistych wg tablicy, lp. 3.
d) sprawdzenie wyglądu cynkowej powłoki antykorozyjnej wg tablicy, lp. 5.
e) sprawdzenie grubości cynkowej powłoki antykorozyjnej wg tablicy, lp. 6.

5.4.3 Badania uzupełniające

Badania uzupełniające gotowych wyrobów obejmują:

a) sprawdzenie grubości dodatkowej powłoki antykorozyjnej (jeśli występuje) wg tablicy, lp. 7,
b) badanie przyczepności dodatkowej powłoki antykorozyjnej (jeśli występuje) wg tablicy, lp. 8.

5.5 Pobieranie próbek do badań

Próbkę do badań należy pobierać zgodnie z ustaleniami dokumentacji zakładowej kontroli produkcji.

5.6 Częstotliwość badań

Badania bieżące powinny być wykonywane zgodnie z planem badań ustalonym w dokumentacji zakładowej kontroli produkcji dla każdego zestawu SuperCor (do budowy jednej konstrukcji). Badania uzupełniające powinny być wykonywane dla każdego zestawu SuperCor w którym zastosowano dodatkowe powłoki antykorozyjne.

5.7 Ocena wyników badań

Wyrób należy uznać za zgodny z wymaganiami niniejszej Aprobaty Technicznej IBDiM, jeżeli wyniki wszystkich badań są pozytywne.

6 KLASYFIKACJA WYNIKAJĄCA Z ODRĘBNYCH PRZEPISÓW I POLSKICH NORM

6.1 Polska Klasyfikacja Wyrobów i Usług (PKWiU): 28.11.23-62.79

6.2 Polska Scalona Nomenklatura Towarowa Handlu Zagranicznego (PCN): 7308 90 59 0

7 WYTYCZNE DOTYCZĄCE PAKOWANIA, TRANSPORTU I SKŁADOWANIA ORAZ SZCZEGÓŁOWY SPOSÓB ZNAKOWANIA WYROBU BUDOWLANEGO

7.1 Wytyczne dotyczące pakowania

Elementy zestawu SuperCor pakowane są w otaśmowane pakiety. W pakietce znajduje się opisany jeden rodzaj elementów o takiej samej krzywiźnie i wymiarach, zgodnie z rysunkiem montażowym producenta.
7.2 Wytyczne dotyczące składowania

Elementy zestawu SuperCor należy składać na stałym i równym podłożu w taki sposób by nie dopuścić do uszkodzeń powłoki antykorozyjnej i deformacji elementów.

7.3 Wytyczne dotyczące transportu

Elementy zestawu SuperCor można przewozić dowolnymi środkami transportu pod warunkiem zabezpieczenia ich przed przesunięciem oraz mechanicznymi uszkodzeniami powłoki antykorozyjnej.

7.4 Szczegółowy sposób znakowania wyrobu budowlanego

Wyrob należy oznakować znakiem budowlanym zgodnie z rozporządzeniem Ministra Infrastruktury z dnia 11 sierpnia 2004 r. w sprawie sposobów deklarowania zgodności wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. Nr 198, poz. 2041 ze zm.). Do wyrobu budowlanego oznakowanego znakiem budowlanym, producent jest obowiązany dołączyć informację zawierającą:

a) określenie, siedzibę i adres producenta oraz adres zakładu produkującego wyrob budowlany;

b) identyfikację wyrobu budowlanego zawierającą: nazwę techniczną, nazwę handlową, kształt przekroju poprzecznego, oznaczenie profilu fali, oznaczenie symbolem literowym z liczbą, grubość blachy;

c) numer i rok wydania niniejszej Aprobaty Technicznej IBDiM, z którą potwierdzono zgodność wyrobu budowlanego;

d) numer i datę wystawienia krajowej deklaracji zgodności;

e) inne dane, jeżeli wynika to ze specyfikacji technicznej.

Informację należy dołączyć do wyrobu budowlanego w sposób umożliwiający zapoznanie się z nią przez stosującego ten wyrob.

8 WYKAZ DOKUMENTÓW WYKORZYSTANYCH W POSTĘPOWANIU APROBACYJNYM, W TYM WYKAZ RAPORTÓW Z BADAN WYROBU BUDOWLANEGO

W postępowaniu aprobacyjnym wykorzystano:

8.1 Polskie Normy i inne Normy:

a) PN-EN 1990:2004 Eurokod: Podstawy projektowania konstrukcji

c) PN-EN 10025-1:2007 Wyroby walcowane na gorąco ze stali konstrukcyjnej - Część 1: Ogólne warunki techniczne dostawy

d) PN-EN 10025-2:2007 Wyroby walcowane na gorąco ze stali konstrukcyjnej - Część 2: Warunki techniczne dostawy stali konstrukcyjnych niestopowych

e) PN-EN 10131:2008 Wyroby płaskie ze stali niskowęglowych i stali o podwyższonej granicy plastyczności walcowane na zimno, niepowlekane i powlekane elektrolitycznie powłoką cynkową lub cynkowo-niklową, przeznaczone do obróbki plastycznej na zimno -- Tolerancje wymiarów i kształtu
f) PN-EN 10149-1:2000 Wyroby płaskie walcowane na gorąco ze stali o podwyższonej granicy plastyczności do obróbki plastycznej na zimno -- Ogólne warunki dostawy

g) PN-EN 13501-1+A1:2010 Klasyfikacja ogniowa wyrobów budowlanych i elementów budynków - Część 1: Klasyfikacja na podstawie wyników badań reakcji na ogień

h) PN-EN 10204:2006 Wyroby metalowe -- Rodzaje dokumentów kontroli

i) PN-EN ISO 898-1:2013-06 Własności mechaniczne części złącznych wykonanych ze stali węglowej oraz stopowej -- Część 1: Śruby i śruby dwustronne o określonych klasach własności -- Gwint zwykł i drobnozwojny

j) PN-EN ISO 898-2:2012 Własności mechaniczne części złącznych ze stali węglowej i stali stopowej -- Część 2: Nakrętki z określoną wartością obciążenia próbnego -- Gwint zwykły i drobnozwojny

k) PN-EN ISO 1461:2011 Powłoki cynkowe nanoszone na wyroby stalowe i żeliwne metodą zarurzeniową -- Wymagania i metody badań

l) PN-EN ISO 2808:2008 Farby i lakiery -- Oznaczanie grubości powłoki

m) PN-EN ISO 4624:2004 Farby i lakiery -- Próba odywania do oceny przyczepności

n) PN-EN ISO 9001:2009 Systemy zarządzania jakością -- Wymagania

o) PN-S-10030:1985 Obiektu mostowe -- Obciążenia

p) ASTM A449-93 Standard Specification for Quenched and Tempered Steel Bolts and Studs (Specyfikacja normowa na szybkie chłodzenie i stopień twardości śrub)

q) ASTM A563-96 Standard Specification for Carbon and Alloy Steel Nuts (Specyfikacja normowa na nakrętki stalowe)

r) AASHTO M 167 Material Specification (Specyfikacja materiałowa)

s) ASTM A1011/A1011M Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability

t) ASTM D3359-97 Standard test methods for measuring adhesion by tape test – Oznaczanie przyczepności powłoki do podłoża metodą taśmy

u) CSA G401-93 National Standard of Canada - Hot Dip Galvanizing Bolts and Nuts (Gorąca kapiel galwaniczna śrub i nakrętek)

v) Procedura Badawcza IBDiM Nr PB/TW-1/144:2013 Oznaczanie wytrzymałości połączeń śrubowych

8.2 Raporty z badań wyrobu budowlanego

b) Opinia Techniczna dotycząca możliwości dopuszczenia konstrukcji gruntowo – powlokowych produkowanych przez firmę ViaCon Polska Sp. z o.o. na liniach kolejowych PKP dla prędkości 200 km/h. Symbol: IBDiM-TWOK-OP-31607/W-1888

c) Analiza zachowania się konstrukcji podatnych, gruntowo – powlokowych poddanych obciążeniom taborem kolejowym poruszającym się z prędkością do 200 km/godz., „Mostek” Zygmunt Kubiak, luty 2007 r.

8.3 Inne dokumenty

a) „Zalecenia projektowe i technologiczne dla podatnych konstrukcji inżynierskich z blach falistych”, Załącznik do Zarządzenia Nr 9 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 18 marca 2004 r.
9 **POUCZENIE**

9.1 Aprobata Techniczna nie jest dokumentem upoważniającym do oznakowania wyrobu budowlanego przed wprowadzeniem do obrotu.

9.2 Niniejsza Aprobata Techniczna IBDiM może być uchylona z inicjatywy własnej jednostki aprobowającej lub na wniosek Głównego Inspektora Nadzoru Budowlanego, po przeprowadzeniu postępowania wyjaśniającego z udziałem wnioskodawcy.

9.3 Niniejsza Aprobata Techniczna IBDiM nie narusza uprawnień wynikających z ustawy z dnia 30 czerwca 2000 r. Prawo własności przemysłowej (Dz. U. z 2003 r. Nr 119, poz.1117, ze zm.).

9.4 Od niniejszej Aprobaty Technicznej IBDiM nie służy odwołanie.

Załączniki: 3

Otrzymuję:

1. Pełnomocnik Wnioskodawcy: **ViaCon Sp. z o.o.,** z siedzibą: **ul. Przemysłowa 6, 64-130 Rydzyna**
 - 2 egz.

2. a/a Dział Normalizacji **Instytutu Badawczego Dróg i Mostów,** ul. Instytutowa 1,
 03-302 Warszawa tel. 22 39 00 414, fax 22 675 41 27
 - 1 egz
ZAŁĄCZNIK 1 – Zestawienie przekrojów zestawów SuperCor

W tablicy Z1 zestawiono kształty przekrojów zestawów SuperCor, z podaniem symbolu danego kształtu oraz podstawowych wymiarów przekroju: szerokości (rozpiętości) B i wysokości H dla najmniejszego i największego przekroju (średnicy D dla przepustów o przekroju kołowym).

Tablica Z1-1

<table>
<thead>
<tr>
<th>Lp</th>
<th>Określenie kształtu przekroju</th>
<th>Najmniejszy przekrój</th>
<th>Największy przekrój</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Symbol</td>
<td>Wymiary [m]</td>
</tr>
<tr>
<td>1</td>
<td>Przekrój kołowy</td>
<td>SC-66 R</td>
<td>D=8,40</td>
</tr>
<tr>
<td>2</td>
<td>Przekrój skrzynkowy</td>
<td>SC-1B</td>
<td>B=3,170 H=1,180</td>
</tr>
<tr>
<td>3</td>
<td>Przekrój o tradycyjnym profilu luku</td>
<td>SC-27SA</td>
<td>B=6,990 H=3,495</td>
</tr>
<tr>
<td>4</td>
<td>Przekrój o niskim profilu luku</td>
<td>SC-1NA</td>
<td>B=8,000 H=3,594</td>
</tr>
<tr>
<td>5</td>
<td>Przekrój o pośrednim profilu luku</td>
<td>SC-1OA</td>
<td>B=9,320 H=4,542</td>
</tr>
<tr>
<td>6</td>
<td>Przekrój o wysokim profilu luku</td>
<td>SC-1HA</td>
<td>B=9,000 H=5,168</td>
</tr>
</tbody>
</table>

Dla każdego z przekrojów przy większych rozpiętościach istnieje możliwość zastosowania dodatkowych wzmocnień w najbardziej wytężonych jego częściach. Rysunek Z1-1 przedstawia sposób konstruowania wzmocnienia. Przestrzeń pomiędzy elementami podstawowymi a wzmocnieniem można wypełnić mieszanką betonową, co dodatkowo zwiększa sztywność konstrukcji.

Rysunek Z1-1 Sposób konstruowania wzmocnienia.
Rysunek Z1-2 Schematy kształtów przekrojów wykonywanych z zestawu SuperCor;
a - przekrój kołowy, b - przekrój skrzynkowy, c - przekrój o tradycyjnym profilu łuku, d - przekrój o niskim profilu łuku, e - przekrój o średnim profilu łuku, f - przekrój o wysokim profilu łuku.
ZAŁĄCZNIK 2 – Charakterystyki geometryczne elementów zestawu SuperCor

1. Parametry geometryczne arkuszy blach i profilu SuperCor:
 - Szerokość arkusza całkowita: 838 mm,
 - Szerokość arkusza efektywna: 762 mm,
 - Wysokość fali: 140,0 mm,
 - Długość fali: 381,0 mm.

Pozostałe charakterystyki geometryczne profilu i arkuszy blach SuperCor przedstawiono na rysunkach Z2-1 i Z2-2.

Rysunek Z2-1 Rzut arkusza blachy (płaszcza - wymiary przed nadaniem krzywizny).

Tolerancje wymiarów: S=406,4; (±5 mm).

Rysunek Z2-2 Przekrój fali.
2. **Parametry geometryczne ceowników montażowych:**

 ![Diagram of assembly elements](image)

 Rysunek Z2-3 Wymiary poprzeczne ceowników montażowych.

3. **Parametry geometryczne łączników śrubowych:**

 Charakterystyki geometryczne łączników śrubowych przedstawiono na rysunku Z2-4.

 a)

 ![Diagram of bolt connections](image)

 b)

 ![Diagram of bolt connections](image)

 Rysunek Z2-4 Śruby łączące arkusze blach: a) zgodna z ASTM 449-93, ASTM A 563-96,
 b) zgodna z PN-EN ISO 898-1.
ZACZNIK 3 – Procedura badania wytrzymałości połączeń blach falistych

Z3-1 Postanowienia ogólne
Z3-1.1 Cel procedury
Celem procedury jest określenie trybu postępowania przy oznaczaniu wytrzymałości połączeń śrubowych blach falistych.

Procedura ma zastosowanie przy oznaczaniu wytrzymałości połączeń śrubowych blach falistych w konstrukcjach niosących, prefabrykowanych z blachy falistej stalowej lub aluminiowej do budowli z naziemem.

Niniejsza procedura obejmuje oznaczanie wytrzymałości połączenia śrubowego wraz z kontrolą deformacji występujących podczas obciążenia.

Z3-1.2 Określenie obiektu badania i badanych cech
Badania przeprowadza się na fragmentach blach falistych, połączonych przy pomocy złączy śrubowych.

Próbki powinny być przycięte równolegle do linii połączenia śrubowego. Próbka powinna być wykonana z arkusza blachy o pełnej szerokości lub wycinka obejmującego pełną liczbę fali (minimum jedna pełna fala). Powierzchnie przyłożenia siły do próbek powinny być równoległe do siebie i przygotowane poprzez przysypawanie blach czołowych o grubości nie mniejszej niż 20 mm, szerokości większej niż 50 mm od wysokości fali i długości co najmniej równej długości próbki.

Gotowa próbka powinna mieć wysokość nie mniejszą niż 200 mm (rysunek 1).

Z3-1.3 Zasada oznaczania
Wytrzymałość połączeń śrubowych oznaczana jest na maszynie wytrzymałościowej przy ustalonej prędkości przyrostu obciążenia w czasie (od 0,2 kN/s do 5 kN/s). Liczbowo określa się ją jako wartość siły niszczącej połączenie na metr bieżący połączenia [kN/m]. Jeśli nie następuje wyraźne zniszczenie próbki, za siłę niszczącą uznaje się siłę przy której wystąpiły deformacje próbki uniemożliwiające prawidłowe funkcjonowanie badanego połączenia (maksymalnie 40 mm).

Z3-1.4 Wymagania dotyczące personelu wykonującego badanie
Personel wykonujący badania powinien być przeszkolony w zakresie swoich obowiązków i zaznajomić się z niniejszą procedurą.

Z3-1.5 Warunki wykonania badania
Badanie należy wykonać w temperaturze nie niższej niż +5 °C.

Z3-2 Wyposażenie pomiarowe i badawcze

Z3-2.1 Stanowisko badawcze
Charakterystyka stanowiska do badań wytrzymałościowych:
- maksymalna siła obciążająca uzyskiwana na maszynie wytrzymałościowej powinna być większa o co najmniej 20% od siły wymaganej w badaniu obciążenia badawczego.
- siła powinna być równomiernie rozkładana za pomocą stempła na całej powierzchni blach czołowych,
- dolna podpora maszyny wytrzymałościowej powinna mieć wymiary nie mniejsze niż wymiary dolnej blachy czołowej,
- możliwość zapisywania przebiegu odkształceń złącza śrubowego w funkcji siły badawczej,
- możliwość ustawienia prędkości przyrostu siły badawczej w zakresie od 0,2 kN/s do 5 kN/s.

Z3-2.2 Przyrządy pomiarowe
Do wykonania badania jest wymagany następujący sprzęt pomiarowy:
- czujnik siły z możliwością rejestracji danych,
- co najmniej dwa czujniki przemieszczenia z możliwością rejestracji danych.

Z3-2.3 Sprzęt pomocniczy
Do wykonania badania jest stosowany następujący sprzęt pomocniczy:
- marker,
- miarka zwijana, suwmiarka.

Z3-3 Próbką
Z3-3.1 Liczba próbek
Badanie powinno obejmować co najmniej 3 próbkę z danego typu połączenia oraz grubości i gatunku blachy.

Z3-3.2 Przygotowanie próbek
Próbki nie wymagają kondycjonowania przed badaniem, ale należy przeprowadzić kontrolę wizualną w celu wykrycia ewentualnych wad (np. nierównoległość powierzchni czołowych, deformacja powierzchni czołowych). W celu wyeliminowania niewielkich nierówności powierzchni blach czołowych, próbki mogą być ustawiane za pośrednictwem podkładek elastomerowych lub podkładek z płyt piłśniowych w wymiarach nie mniejszych niż wymiary blach czołowych (rysunek 2).

Z3-4 Przebieg badania
Czujniki przemieszczenia należy umieścić tak, aby mierzyły przemieszczenie dwóch blach czołowych względem siebie (rysunek 1). Siłę badawczą należy przyłożyć do całej powierzchni czołowej blach z prędkością od 0,2 kN/s do 5 kN/s. Badanie prowadzone jest do zniszczenia połączenia (np. ściecia śrub, rozerwania otworów) lub wystapienia deformacji przekraczających 40 mm.

Z3-5 Ocena wyników badania
Należy zapisać przebieg odkształceń w funkcji obciążenia. Jeśli wystąpiło zniszczenie połączenia należy zapisać obciążenie przy którym wystąpiło zniszczenie. Jeśli nie nastąpiło wyraźne uszkodzenie próbki, za obciążenie niszczące uznaje się siłę przy której wystąpiły odkształcenia uniemożliwiające
prawidłowe funkcjonowanie badanego połączenia (na podstawie deklaracji producenta, lecz nie więcej niż 40 mm). Następnie należy obliczyć wytrzymałość połączenia w kN/m długości połączenia:

\[F_{pi} = \frac{P_i}{l_i} \]

gdzie:
- \(F_{pi} \) – wytrzymałość połączenia (próbka „i”) [kN/m]
- \(P_i \) – siła niszcząca próbkę „i” [kN]
- \(l_i \) – długość próbki „i” [m]

Ostateczny wynik należy podać jako średnią z trzech wyników badań poszczególnych próbek i tę wartość porównać z wymaganą wytrzymałością dla danego połączenia.

Z3-6 Sprawozdanie z badania

W sprawozdaniu należy zamieścić:
- identyfikację próbek (typ karbowania, symbol i numer przekroju, materiał i nominalną grubość blachy, rodzaj powłok antykorozjnych oraz rodzaj, średnią i długości łączników śrubowych),
- wykres odkształceń w funkcji siły obciążającej,
- maksymalną siłę występującą w czasie badania,
- wytrzymałość połączeń poszczególnych próbki \(F_{pi} \) i średnia wytrzymałość połączeń \(F_p \),
- spis użytego sprzętu i przyrządów pomiarowych,
- opis innych czynników które mogły mieć wpływ na wynik badań, w szczególności czynniki nie opisane w niniejszej procedurze i nieprawidłowe zniszczenie próbki (np. deformacja blachy poza powierzchnią połączenia, wykrzywienie blach czołowych itp.).

Rysunek Z3-1 Przykładowa próba do badań i rozmieszczenie czujników przemieszczeń
Rysunek Z3-2 Schemat obciążenia próbki w czasie badań